
www.cleverscope.com

Cleverscope Ltd
Phone +64 9 524 7456
Mob +64 21 1777 367
Email support@cleverscope.com
21A Lancing Rd, Sandringham
P.O. Box 26-527
Auckland 1025
New Zealand

V2.8
26 Apr 2018

Cscope Control Driver DLL Description v2.8

1 Summary
The Cscope Control Driver DLL is used by text based languages to communicate with the Cleverscope CS328A
acquisition unit. The DLL can be used in both x32 and x64 bit environments.

We provide an example ‘SimpleScope’ application to show use of the driver. The example is available for NI Labview,
NI Labwindows, Borland Delphi 5, Borland C++ Builder 6, Microsoft Visual Studio Express C++ 2008, C# 2008, and
Visual Basic 2008. We have deliberately used older environments, as newer toolsets continue to open older version
projects. See section 6, which describes how the SimpleScope application is put together.

The Labview based document Cscope Control Driver vi description is very useful as it shows step by step what inputs
and output are needed for several capture scenarios.

The VS2008 C++ version of SimpleScope also includes the ability to capture from two connected Cleverscope
Acquisition Units (CAU) - either using a link cable, or as independent units, and with internal sample clock, or
external sample clock. See the Simple Scope description in section 6. The VS2008 C++ version also includes the
updated v2.8 function calls.

V2.8 adds further function results to CscopeFunction and adds the entirely new CscopeSpectrum to return spectrum

information. See the procedure definitions for more information.

www.cleverscope.com

2 Important Information
1. To use the application you need to have these components installed:

 The National Instruments LV7.1 Run Time library. This happens automatically when you install Cleverscope, so
make sure Cleverscope has been installed on the target machine.

 NI-Visa, and the USB port linked to the driver. If you did a full Cleverscope install (rather than just the demo),
NI-Visa and the USB links will have been installed.

 If you are using Visual Studio, you will need .Net Version 3.5 Runtime installed. You can download this from
the Microsoft website (http://download.microsoft.com/download/2/0/e/20e90413-712f-438c-988e-
fdaa79a8ac3d/dotnetfx35.exe).

An full environment installer is available on the Resources page of the Cleverscope website, as ‘Control Driver
Installer xxxx.zip’. See the installation pdf inside the zip for instructions. This installer can be used where the
Cleverscope application has not been installed.

2. The DLL uses the STD CALL method of parameter passing. Ensure your environment is setup this way.

3. For Visual Studio, you will get a Managed Design Assistant (MDA) ‘Loader Lock’ error if you have the MDA loader
lock enabled. The NI Labview Run Time library uses managed code, and will cause an error if the MDA loader
lock is enabled. NI say this will not cause a problem. To avoid errors, turn off the Loader Lock - Find the menu
item Debug/Exceptions.
In the Exceptions dialog, expand Managed Debugging Assistants and find LoaderLock. Now uncheck the check
box next to LoaderLock.

4. You will have to put copies of the two files ‘Cscope Control Driver.dll’ and ‘FTD2XX.dll’ in Windows/System32
and Windows/SysWOW64 (for 64 bit systems) as the most general case, or put them in the same directory as
your development files, and in the directory with the resulting .exe. Only one copy of ‘Cscope Control Driver.dll is
included in the distribution, at the root of the distribution zip. If you use the installer, the dll’s are automatically
copied to the system32 directory. You will have to copy the files to the SysWOW64 directory yourself. You can
use the CopyDLL.bat batch file to transfer required files to both directories.

5. The CscopeControlDriver DLL is a 32 bit object. To use it, you will have to target any applications you build to be
x32 based.

a. In Visual C++ select Win32 as the target () on the tool bar, or use the
Configuration manager (Build/Configuration Manager..) to do this.

b. In Visual C# select the x86 target ().
c. In Visual Basic Express, the default is AnyPC, which works fine. The default is located in the SimpleScope\

SimpleScope.vbproj file, which is an XML file. The XML file contains this line: <Platform Condition="

'$(Platform)' == '' ">AnyCPU</Platform>
Cleverscope has verified operation of SimpleScope in both x32 and x64 bit versions of Windows 7.

6. The Visual Studio applications use Zedgraph, a toolset for plotting graphs. This is an Open Source toolset

available here: http://sourceforge.net/projects/zedgraph/. Click the Download button to obtain component. It is

included in the Cleverscope DLL distribution. You can put the zedgraph.dll in your windows\system32 directory

(and SysWow64 if you are running a x64 bit system), or in the application folder.

www.cleverscope.com

7. Using the Microsoft Visual Studio 2008 Express environments, with the project in a 'SimpleScope' folder, you will
find operating executables in the following locations:

C++

C#

Basic

www.cleverscope.com

3 Control Driver Versions
Doc
Version

Date Change

1.0 1 Feb 2005 Initial Cscope Control Driver released

1.4 15 Sep 2008 Sample value format changed from Double to Float (Single), to reduce memory
usage. Added Num_Frames value to driver to report the number of frames
transferred in a multi-frame capture and transfer. Made small changes to the
acquire structure – the order and contents after ‘Trigger2Source’ has changed.

2.0 14 Feb 09 Major change to underlying driver. It now supports multiple connected
Cleverscope Acquisition Units simultaneously (up to 8 standard, email for
more), and includes much improved error display and recovery. In addition the
new driver supports both USB and Ethernet. The 40 ms wait in the ‘wait for
samples’ call has been removed – it is now up to the calling application to wait
after starting an acquire. The SimpleScope software has been restructured to
show how to call the driver for maximum throughput with minimum CPU
loading.

2.1 10 Nov 09 Driver now supports 32 connected units, calibration tables for old and new
firmware versions. Improved documentation. Included information on new
Function command. Update to Bandwidth values.

2.2 7 May 10 Added the CscopeFunction procedure. This procedure is used to make function
calls that were previously made using variants on the CscopeControlDriver
FrameNumber and NumFrames values. CscopeFunction now provides a Double
out value, and an array of bytes into and out of the function to provide transfer
of structures. The existing Function calls to CscopeControlDriver still work to
maintain backward compatibility, but all new function calls will use
CscopeFunction. The CscopeFunction will be used to provide increased utility of
the rear link port. This iteration can be used to send and receive a serial data
stream. In the TD1 acquire structure, UnitsAreLinked has been replaced with
LinkPort. The extra parameters FunctionResult, LinkStart, LinkTimebase,
LinkTimer, LinkSetup have been added – see the descriptions below.

2.4 1 Mar 11 Added Calibrate function to the Cscope Function facility. Calibration supported
for Once yearly, Standard, and Signal generator.

2.5 16 Jun 12 Improvements to use of multiple connected Acquisition Units

2.6 18 Mar 13 Improved accuracy of number of samples to be transferred. Improved firmware
(6463 required) for capture co-ordination. Removed bug in non-rentrant
procedure which caused occasional sampling stoppage.

2.7 15 Mar 14 Supports Internal, Constant External and Variable External sampling clocks.
Requires firmware 6467.

2.8 26 Apr 18 V2.8 adds further function results to CscopeFunction and adds the entirely
new CscopeSpectrum to return spectrum information. See the procedure
definitions for more information.

www.cleverscope.com

4 Cscope Control Driver Files
The Cscope Control Driver comes as four files:

 Cscope Control Driver.h
This header file is used by C++ and C# to define the prototypes for the structures and procedures in Cscope
Control Driver. When using Microsoft VS C#, the header items needs to be converted to managed data
structures. The utility “P/Invoke Wizard” can help with this. Similarly a conversion is required for Delphi, and
“HeadConv” by Bob Swart can help. For Microsoft VS, you will have to use ‘Project/Add Existing Item…” to
include the file in the project.

 Cscope Control Driver.dll
This contains the actual driver. It needs to be linked with the project. See the programming examples to see
how the DLL has been linked. For Microsoft VS, you will have to use ‘Project/Add Existing Item…” to include the
file in the project.

 Cscope Control Driver.lib
This is the library file, and is required for the C variants. For Delphi C++ builder, you will need to convert the
standard library into Borland format. The ‘implib.exe’ utility is provided for this purpose. The example includes
a pre-converted library. You will only need to convert if you use Labview to rebuild the Control Driver. Other
environments use the .lib file directly.

 FTD2XX.DLL
This dll is used by Cscope Control Driver.dll to communicate with the CS328 (Classic). It is required.

5 Cscope Control Driver
This is the content of the cscope control driver.h file for C or C++. This module is required for interface to the
Cleverscope DLL. The complete environment for defining a Cleverscope Acquisition Unit (CAU) setup is defined by
the acquiredefn structure. When making changes to the CAU state, change the parameters that need updating and
increment the ValueChanged parameter. Three procedures - CscopeControlDriver , CscopeFunction, and
CscopeSpectrum - are used to access and return values from any connected CAU's. Up to 32 CAU's can be controlled
by CscopeControlDriver. See the following sections for more information.

Check out SimpleScope in Section 6 to see how we have implemented a simple oscilloscope.

5.1 Cscope Control Driver.h
#pragma pack(push)

#pragma pack(1)

#ifdef __cplusplus

extern "C" {

#endif

typedef struct {

 unsigned short AcquireMode;

 unsigned short AcquisitionMode;

 unsigned short Acquirer;

 unsigned short TransferChans;

 double AMaxScale;

 double AMinScale;

 double BMaxScale;

 double BMinScale;

 unsigned short AProbe;

 unsigned short BProbe;

 unsigned short ACoupling;

 unsigned short BCoupling;

 unsigned short ABandwidth;

 unsigned short BBandwidth;

 unsigned long TriggerSource;

 double TriggerAmplitude;

 double ATriggerAmplitude;

 double BTriggerAmplitude;

 unsigned short TriggerFilter;

 LVBoolean TrigSlope;

www.cleverscope.com

 double TriggerHoldoff;

 LVBoolean DigPatternRqd;

 unsigned long DigPattern;

 double ExtTrigThreshold;

 double DigInputThreshold;

 double StartTime;

 double StopTime;

 double SampleInterval;

 unsigned short Port;

 short NumDivisions;

 short NumSeqFrames;

 long NumBuffers;

 double SigGenFreq;

 double SigGenAmp;

 double SigGenOffset;

 unsigned short SigGenWaveform;

 unsigned short SigGenSweep;

 unsigned short SigGenFunc;

 double SigGenFreq2;

 double SigGenPhase;

 unsigned short Trig2Function;

 double MinTriggerPeriod;

 double MaxTriggerPeriod;

 unsigned long TriggerCount;

 LVBoolean Trig2Slope;

 unsigned long Trig2SourceChan;

 double Trig2Level;

 LVBoolean DigPattern2Rqd;

 unsigned long DigPattern2;

 unsigned short Trigger2Source;

 long WaveformAverages;

 long ValueChanged;

 double FreqSpan;

 double FreqRes;

 double Duration;

 double Resolution;

 unsigned char LinkPort;

 unsigned char ExtSampleClock;

 LVBoolean FSpare2;

 LVBoolean FSpare3;

 LVBoolean FSpare4;

 unsigned short SamplerResolution;

 unsigned short IntfSource;

 unsigned short UpdateRate;

 unsigned short TransferSize;

 double SigGenFreqStep;

 unsigned long TCPAdr;

 unsigned long TCPPort;

 unsigned long CAUSerNumHi;

 unsigned long CAUSerNumLo;

 double FunctionNumber;

 double FunctionParameter;

 double FunctionResult;

 unsigned long LinkStart;

 unsigned long LinkTimebase;

 unsigned long LinkTimer;

 unsigned long LinkSetup;

 double Spare1;

 double Spare2;

 double Spare3;

 double Spare4;

 } TD1;

typedef struct {

 LVBoolean status;

 long code;

 LStrHandle source;

 } TD2;

void __stdcall CscopeControlDriver(long AcquisitionUnit,

 unsigned short Command, double ReplayStartTime, double ReplayStopTime,

 long SamplesInReplay, long FrameNumber, TD1 *AcquireDefinition,

 LVBoolean *GotSamples, double *T0, double *dT, unsigned long *NumSamples,

 unsigned long *NumFrames, float ChanAData[], long ChanAAllocSpace,

 float ChanBData[], long ChanBAllocSpace, unsigned short DigitalInputData[],

 long DigInpAllocSpace, unsigned short *CAUStatus, TD2 *errorOut);

void __CscopeFunction(long AcquisitionUnit, unsigned short FunctionCommand, double Parameter,

unsigned char LinkDataSend[], long LinkDataSendAllocSpace, double *FunctionResult, double *ResultA,

double *ResultB, unsigned char LinkDataReceived[], long LinkDataReceivedAllocSpace, TD1 *errorOut)

www.cleverscope.com

void __CscopeSpectrum(long AcquisitionUnit, unsigned short SpectrumType, unsigned short FFTWindow,

LVBoolean *dBOn, LVBoolean *DegreesOn, LVBoolean *UnwrapPhase, double *dF, long *NumFreqBins,

double ChanAAmpGain[], long ChanAAmpGainAllocSpace, double ChanBAmpPhase[],

long ChanBAmpPhaseAllocSpace, double ChanAImPhase[], long ChanAImPhaseAllocSpace,

double ChanBImPhase[], long ChanBImPhaseAllocSpace, TD1 *errorOut)

long __cdecl LVDLLStatus(char *errStr, int errStrLen, void *module);

#ifdef __cplusplus

} // extern "C"

#endif

#pragma pack(pop)

5.2 Cscope Driver Procedures

Cscope driver provides four procedures:

 CscopeControlDriver
This procedure is used to communicate with the acquisition unit, configure it, and retrieve samples.

 CscopeFunction
This procedure is used to exercise system level functions, derive mathematical values based on the current
signal, and gain access to calibration and the link port.

 CscopeSpectrum
This procedure returns the spectrum (in four formats) of the currently acquired or replayed signal.

 LCDLL status
This function is used to verify that the DLL loaded properly, and if not, what the error is.

LVBoolean is a U8. 0 means false, 1 means true.

5.3 Using CscopeControlDriver
This is the main user procedure. Parameters are:

void __stdcal CscopeControlDriver(long AcquisitionUnit,

 unsigned short Command, double ReplayStartTime, double ReplayStopTime,

 long SamplesInReplay, long FrameNumber, TD1 *AcquireDefinition,

 LVBoolean *GotSamples, double *T0, double *dT, unsigned long *NumSamples,

 unsigned long *NumFrames, float ChanAData[], long ChanAAllocSpace,

 float ChanBData[], long ChanBAllocSpace, unsigned short DigitalInputData[],

 long DigInpAllocSpace, unsigned short *CAUStatus, TD2 *errorOut);

To use the CscopeControlDriver carry out these steps:
1. Set the Acquisition Unit number (0..31). Call the DLL with the Inititialize (0) command. You will need to

Inititialize each Cleverscope slot used.
2. Use the CAU status (6) command until the status is ‘Open’.
3. Setup the Acquire Definition, and call using the Acquire (1) command. The Acquire call automatically updates the

acquisition unit to the contents of the AcquireDefinition structure.
4. Use a timed loop that achieves the desired throughput. Maximum throughput is typically 40 updates per second

(25 msec intervals). If the sequence
 cmd Acquire– repeat {wait 25ms then cmd Wait for samples} until GotSamples = 1
is used, maximum throughput will be reached. Call the Wait for samples (3) command until GotSamples = 1. The
data will now be in the data array. The driver uses a runtime that operates in the background.

5. If you want to replay another portion of the acquired data, use the Replay (2) command followed by Wait for
samples (3) to check for the samples being transported. Any returned signal subset will be clipped to the start
and end times specified when the acquire was made.

6. If you want to update the acquisition unit, without making an acquisition, or while waiting for a trigger, use the
Update (4) command. You can control the signal generator this way.

www.cleverscope.com

7. Close this Acquisitions Unit by using the Close (5) command. Following the close command the CAU Status will
return ‘Runtime Closed’.

8. After having closed all other Acquisition Unit slots used, finish by calling the Finish (9) command. The Finish
command removes the runtime from memory.

Notes:
1. The driver will automatically take the next lowest available USB port if more than one CS328 or CS328A are

connected, and IntfSource = 0, or USB. The port/CAU binding is repeatable through PC restarts.
2. The CAU Status value may be used to check if the Cleverscope is available and turned on. If after an Init, the CAU

status does not change to Open, the CAU is not available.
3. ErrorOut may be used to check for errors.
4. LCDLL status may be used to verify that the DLL has loaded correctly before use.

5.3.1 Parameters

Acquisition Unit

Input: Signed 32 bit number.
This value sets the Cleverscope Acquisition Unit (CAU) being addressed (0..31). Up to 32 simultaneous CAU’s can be
controlled at the same time (unless Max Units is increased). Each connected acquisition unit occupies one slot. If a
slot is not occupied it uses no additional memory – the CAU runtime support is dynamically loaded when the CAU is
opened.

Command

Input: Unsigned 16 bit value.
Values are:

Value Command Description

0 Inititialize Call this once to initialise the acquisition system. Further calls are ignored.

1 Acquire Call to acquire data as defined by the Acquire Definition and other parameters. Calling acquire
automatically updates the acquisition unit with any changed acquire values.

2 Replay Call this to re-decimate the capture buffer, and return new samples, based on the SamplesIn
Replay, ReplayStartTime and ReplayStopTime values.

3 Wait for
samples

Call this to check if a trigger has occurred, and the samples are available. The Value
GotSamples is set true when all the samples have been received. The call will wait up to 40ms
for a trigger. After 40ms, the call times-out, returning false. The wait blocks the thread, but
relinquishes control to the operating system during the wait. This maximizes throughput.

4 Update This call updates acquisition unit values if the acquisition unit is not acquiring, or is waiting for
a trigger. Can be used to update the signal generator values for example.

5 Close Call this to close down and remove the runtime for the currently selected acquisition unit.
After calling close the CAU status will be returned as ‘Runtime Closed’.

6 Status Calling the Control Driver with the status command just returns the current connection status.
Status values are ‘Runtime Closed’, ‘Closed’, ‘Open’ and ‘Fault’ (0..3), and . See below.

7 Function This value is used to retrieve specific values about the connected Cleverscope Acquisition
Unit. This command has been superseded by the Cscope Function vi.

8 Get Frames Gets a multi-frame sequence as one array. The value num_samples is the number of samples
in one frame. The value num_frames are the number of frames included in the array. After
sending the command, call ‘Wait for Samples’ until the samples are transferred.

9 Finish Call this to close down any remaining unclosed runtime components, and to remove the
control driver from memory.

ReplayStartTime

Input: Double

www.cleverscope.com

This value specifies, in seconds, the start time of the samples to be returned in the decimated replay from the
sample buffer. If the start time is outside the actual available buffer start and stop times (relative to the trigger), the
start time will be clipped to either the beginning or end of the buffer, as necessary.

ReplayStopTime

Input: Double.

This value specifies, in seconds, the stop time (inclusive) of the samples to be returned in the decimated replay from
the sample buffer. If the start time is outside the actual available buffer start and stop times (relative to the trigger),
the start time will be clipped to either the beginning or end of the buffer, as necessary.

SamplesInReplay

Input: Signed 32 bit number.

This value specifies the number of samples that will be returned in the decimated replay from the sample buffer.
Values may vary from 0 to the size of a frame. If you request more samples than in a frame, the number will be set to
the frame size. The maximum size is the acquisition storage size (4 or 8M) divided by 2.

Frame Number

Input: Signed 32 bit number.

This value specifies which frame to return from a multi frame replay. The default is 0.

www.cleverscope.com

AcquireDefinition

This is TD1, the structure
of which is given in the
header

Item Description Data
Type

Acquire Mode How to acquire: 0 = Single, 1= automatic, 2 = triggered, 3 = stop

Make sure this is 3 (stop) when initializing the driver.

U16

Acquisition
Mode

Method of acquisition: 0 = sampled, 1= Peak captured,

2 = Filtered, 3= Repetitive, 4= Waveform avg, (for which make sure there are
at least waveform avg +1 buffers).

U16

Acquirer Sets the acquirer to use. Always use 4 = cleverscope U16

Transfer Chans Always set to 2 = transfer all channels. U16

A max scale Maximum A channel scale value. Double

A Min scale Minimum A channel scale value – make lower than max Double

B max scale Maximum B channel scale value. Double

B min scale Minimum B channel scale value – make lower than max Double

A probe A Probe Multiplier 0 = x1, 1 = x10, 2 = x100, 3 = x1000, 4 = x20, 5 = x50,
6 = x200.

U16

B probe B Probe Multiplier - Same as for A Probe U16

A Coupling A Coupling, 0 = AC, 1= DC U16

B Coupling B Coupling, 0 = AC, 1= DC U16

A Bandwidth Bit 0 - Global Filter enable, 0 = no filter, 1 = use filter

Bit 2:1 - Pre-filter frequency 0 = No filter, 1 = 20 MHz filter

Bit 3: - If true, use the moving average (MA) filter

Bit 4: - Reserved

Bits 7:5 - Filter time constant, in taps:

000 = no filter, 001 = 40ns, 010 = 80ns, 011 = 160ns

100 = 320ns, 101 = 640ns, 110 = 1280ns, tap111 = reserved MA

For the moving average only the channel A moving average value is used, and
it also used for Channel B

U16

B Bandwidth Bit 0 - Global Filter enable, 0 = no filter, 1 = use filter

Bit 2:1 - Pre-filter frequency 0 = No filter, 1 = 20 MHz filter

Bit 3: - If true, use the moving average (MA) filter

Bit 4: - Reserved

Bits 7:5 from A Bandwidth are also used for B Channel MA filter setting

U16

Trigger Source Sets trigger source. 0 = A chan, 1 = B chan, 2 = Ext Trigger, 3 = Dig Input,
4 = Link Port

U16

Trigger
Amplitude

Level at which to trigger for Channel A or Channel B (as set by Trigger
Source). The external or digital input thresholds are set separately below.

Double

A Trigger
Amplitude

Not used in driver. Double

B Trigger
Amplitude

Not used in driver. Double

Trigger Filter Sets filter on trigger. 0 = None, 1 = Low Pass (<250kHz), 2 = Hi Pass (>500
kHz), 3 = noise. (Test signal 20% FSD sine wave).
Normal hysteresis is 2.5%. Noise hysteresis is 7.5%

U16

Trig Slope Sets the trigger slope. 0 = rising, 1 = falling U8

Trigger Holdoff Not used in driver. Double

Dig Pattern Rqd Sets if the digital pattern qualifies the analog trigger. 0 = not required. 1=
required.

U8

Dig Pattern Sets the digital pattern for digital input triggering.

Byte 0 = Select mask, 1= input is used.

Byte 1 = Pattern required before trigger

Byte 2 = Pattern required to trigger

Byte 3 not used.

Bit 0 is input 1 .. Bit 7 is input 8

U32

Ext Trig
Threshold

Sets the amplitude of the external trigger input, -6..+18V Double

Dig Inp
Threshold

Sets the amplitude of the digital input threshold, 0 .. 10V Double

Start Time Sets the start time relative to the trigger, at which acquisition will begin. If
positive delayed triggering is used. Range is –22 .. + 22 seconds.

Double

Stop Time Sets the stop time relative to the trigger. Range is –22 .. + 22 seconds.
Resolution is 10 ns.

Double

SampleInterval Time interval between samples, in s units when streaming data to disk. Double

Port Not used in driver. U16

Num divisions Not used in driver. I16

Num seq frames Sets the number of frames captured sequentially.

If waveform avg method of capture set to 1.

If capturing sequential frames, set to number of frames to capture.

I16

Num Buffers Sets the number of buffers allocated for frame capture. Must be at least num
waveform averages + 1.

I32

www.cleverscope.com

Sig Gen Freq Set the signal generator frequency in Hz. Range is 0.003..10e6 Hz. Double

Sig Gen Amp P-P Amplitude of signal generator output. Range is 0..8V Double

Sig Gen Offset Offset of signal generator output. Range is –5..+5V Double

Sig Gen
Waveform

Sets the signal generator waveform. 0 = sine, 1= triangle, 2 = square, 3 = DC,
4 = 0V.

U16

Sig Gen Sweep Not used in driver U16

Sig Gen Func 0 means normal sig gen use, 1 means step the sig gen upwards by Sig Gen
Freq Step automatically following a trigger.

U16

Sig Gen Freq 2 Not used in driver. Double

Sig Gen Phase Not used in driver. Double

Trig 2 Function Sets the use of Trigger 2. 0 = Not used, 1 = T1~2 < min, 2 = min<= T1~2 <=
max, 3 = T1~2 > max, 4 = Count T1, 5 = Count T2, 6 = T1~2 < min , then
count T2, 7 = min<= T1~2 <= max then count T2, 8 = T1~2 > max then count
T2, 9 = T1 OR T2.

T1~2 = time duration from trigger 1 to trigger 2.

U16

Min Trigger
Period

Sets the min period. 0..22 secs, resolution is 10 ns. Double

Max Trigger
Period

Sets the max period. 0..22 secs, resolution is 10 ns. Double

Trigger Count Sets the number of counts for counting. 0..4,294,967,295 U32

Trig 2 slope Sets the slope for trigger 2. 0 = rising, 1 = falling U8

Trig 2 Source
han

Sets the trigger 2 source channel. 0 = A chan, 1 = B chan, 2 = Ext Trigger, 3 =
Dig Input, 4 = Link Port

U16

Trig 2 Level Sets the trigger 2 threshold level. Double

Dig Pattern 2
Rqd

Sets if Trigger 2 is qualified by the pattern. U8

Dig Pattern 2 Defines the trigger 2 digital pattern. U32

Trigger 2 Source Defines the trigger 2 source – 0 = Trigger 1 inverted, 1= Use the Trigger 2
definition

U16

Waveform
Averages

Sets how many waveforms to average in acquisition unit if acquisition mode =
waveform avg. Values are 1, 4, 16, 64 and 128

I32

Value Changed Change this value to cause the driver to check for changes in all the values in
this data structure. If not changed, data structure values will not update.

I32

Freq Span Not used in driver Double

 Freq Res Not used in driver Double

Duration Not used in driver Double

Resolution Not used in driver Double

Link Port Defines how the Link port will be used. 0 means debug Uart, 1 means the Link
Port outputs trigger, 2 is the port is disabled, 3 means this is a trigger slave
cleverscope link port, 4 means this is a trigger master cleverscope link port, 5
means Uart Port, 6 means SPI Port, 7 means I2C port, 8 means used as 3 bit
digital port, 9 means use Sig Gen to output arbitrary.

U8

Ext Sample
Clock

0 means use internal 100 MHz sample clock. 1 means use external fixed
frequency sample clock, 2 means external variable frequency sample clock (no
stability check made). Clock must be a sine or square wave, with 45-55% duty
cycle, amplitude 0.5V – 3V p-p, biased to 0V or CMOS logic levels. The
external clock frequency must be in the range 1 - 110 MHz.

U8

Fspare 2 Reserved for future use U8

Fspare 3 Reserved for future use U8

Fspare 4 Reserved for future use U8

Sampler
Resolution

Sets the sampler resolution to be used, 0 = 10 bits, 1 = 12 bits, 2 = 14 bits. Will
clip to maximum resolution available.

U16

IntfSource Source for connections – 0 = USB, 1 = Ethernet – Open specified IP address,
2 = Find first connected cleverscope, 3 = find Cleverscope with given serial
number.

U16

Update Rate Not used in driver U16

Transfer Size Use 0 to transfer one frame. Use 6 to transfer all the frames in a sequential
capture as one array. See num frames value in next section.

Sig Gen Freq
Step

Frequency increment used when acquisition unit automatically steps the signal
generator frequency following a trigger, if Sig gen Func = 1.

Double

TCPAdr TCP address of acquisition unit. Format is bb.bb.bb.bb U32

TCPPort TCP port used for acquisition unit. U32

www.cleverscope.com

CAU Ser Num
Hi / Lo

Cleverscope Acquisition Unit serial number split into two U32 values. The
upper two ascii characters are stored in the lower 16 bits of CAU ser Num Hi.
The lower 4 ascii characers are stored in CAU ser Num Lo.

U32

U32

Function
Number

Should not be used direct – used by Cscope Function.vi for Function number
transfer

Double

Function
Parameter

Should not be used direct – used by Cscope Function.vi for Function
parameter transfer

Function Result Should not be used direct – used by Cscope Function.vi for Function result
transfer

Link Start Used to define how the message stored in the link buffer is transmitted:
Bit 0 = Transmit when link_port data received
Bit 1 = transmit at start of sampling
Bit 2 = transmit on trigger
Bit 3 = transmit on completion of sampling.
Bit 4 = transmit on timer
Bit 5 = transmit on digital pattern 1
Bit 6 = transmit on digital pattern 2
Bit 7 = transmit on external trigger rising
Bit 8 = transmit on external trigger falling
Bit 9 = transmit on link input rising
Bit 10 = transmit on link input falling

Bit 11 = transmit again as soon as previous transmit completes.

Link Timebase Clock used to run uart, i2C, spi, or digital outputs. In 1/70Mhz units. = 14.29
ns.
eg 9600 baud = 7292 (an error of 0.4 parts in 9600).

115,200 baud = 608, with an error of 70 parts in 115,200.

Link Timer timer used for repeated messages, in 10us units.

Bit 31 of the timer is enable. 0 = disable timer, 1 = enable, and start timer

Link Setup Setup bits for the different ports
UArt dependant setup values.
 Bit 0 = standard(0), inverted (1) output
 Bits 2:1 - flow control
 0 = no flow control,
 1 = ASCII Xon/Xoff flow control
 2 = Link Input low stops transmitting
 3 = Digital Input 8 low stops transmitting

SPI dependant setup.
 Bit 4 = CPHA = 0 means data is latched on the leading edge of CLK, and
changes on the trailing edge = 1 means data is latched on the trailing edge of
CLK, and changes on the leading edge
 Bit 5 = CPOL = 0 means the clock is low while idle, = 1 means it is high
while idle.

Digital Setup:
 Bit 8 = Sampled/Timed
 = 0, means digital output at sample rate
 = 1. means digital output after count time_base values.

Sig Gen setup:
 Bits 14:12 - Sig gen Destination
 0 = DC Offset (uses DC offset as low frequency ARB)
 1 = DC gain (amplitude modulation)
 2 = Frequency Register (frequency modulation) 28 bit
 3 = Phase Register (phase modulation).
 4 = Select Freq 0 / Freq 1 (1 bit)
 5 = Select Phase 0/ Phase 1 (1 bit)

 Bit 15: = Sampled/Timed

 = 0, means sig gen output at sample rate .

 = 1 means sig gen output after count time_base values.

GotSamples

Returned value – pointer at U8
Returns 0 if samples are not yet all received. 1 = received the values.

T0

Returned Value – pointer at double.
Returns the start time of the waveform being replayed relative to the trigger, which is time 0, in seconds.

dt

Returned Value – pointer at double.

www.cleverscope.com

Returns the interval between successive samples, in seconds.

NumSamples

Returned Value – pointer at U32.
Returns the number of samples in the sample array.

NumFrames

Returned Value – pointer at I32.
a. Returns the number of frames that the sample array is segmented into – only used when returning all the frames
in a sequential capture in one transfer. As an example, assuming 2000 samples per frame, and 100 frames
sequentially captured, one data array of 200,000 samples will be returned, being composed of 100 segments of 2000
samples.
b. For a Function this is the result of the function call.

ChanAData[]

Returned value – pointer to Array of Single (Float). Channel A values.
Values are stored as:

ChanAAllocSpace

Input value – I32
Used to declare to the DLL how much space has been allocated to the Chan A Data array. The data array will be
clipped if insufficient space.

ChanBData[]

Returned value – pointer to Array of Single (Float). Channel B values.
Values are stored as:

ChanBAllocSpace

Input value – I32
Used to declare to the DLL how much space has been allocated to the Chan B Data array. The data array will be
clipped if insufficient space.

DigitalInputData

Returned value – Array of U16. Digital Input values.

Each U16 contains the bit values corresponding as In 1 = Bit 0.. In8 = Bit 7

DigInpAllocSpace

Input value – I32
Used to declare to the DLL how much space has been allocated to the DigitalInputs Data array. The data array will be
clipped if insufficient space.

s 7 exp 0 22 mantissa 0

02331

s 7 exp 0 22 mantissa 0

02331

www.cleverscope.com

CAU Status

Output - Unsigned 16 bit integer

This value is returned after every call to the control driver.

Status values are c_runtime_closed, c_closed, c_open, c_fault, c_fault_closed, c_open_pending

1. At first power up, with a CAU Unit not initialized, The CAU status will be ‘Runtime Closed’.
2. Following a call to Initialize the Control Driver, the CAU status will change to ‘Closed.
3. When the connection is made (via USB or Ethernet), the CAU status changes to ‘Open Pending’.
4. After the full AcquireDefinition has been transferred to the CAU, the status will change to 'Open'.
5. After you have called Command Close the CAU Status will change to c_closed.
6. After you have called Command Finish, the CAU Status will change to c_runtime_closed.
7. While closed you may continue to call initialize, with a new interface specification, if needed.
8. If a Fault occurs during a transfer (for example loss of power to the CAU), the Fault status will be returned once,

and then the runtime will be automatically be closed, and the status returns ‘Runtime Closed’. You will need to
Initialize the CAU unit again.

ErrorOut

Returned pointer. Defines any errors using the TD2 data structure.

5.4 CscopeFunction
The CscopeFunction procedure is used to recover Cleverscope Acquisition Unit (CAU) information, and to control the
Link Port.
NOTE: you will have to set the Link Port to the required destination (eg Link Port = 5 for UART).

void __stdcall CscopeFunction(long AcquisitionUnit,

unsigned short FunctionCommand, double Parameter,

unsigned char LinkDataSend[], long LinkDataSendAllocSpace,

double *FunctionResult, double *ResultA, double *ResultB,

unsigned char LinkDataReceived[], long LinkDataReceivedAllocSpace,

TD1 *errorOut);

5.4.1 Parameters

Acquisition Unit

Input: Signed 32 bit number.
This value sets the Cleverscope Acquisition Unit (CAU) being addressed (0..31). Typically up to 32 simultaneous CAU’s
can be controlled at the same time. Each connected acquisition unit occupies one slot. If a slot is not occupied it uses
no additional memory – the CAU runtime support is dynamically loaded when the CAU is opened.

www.cleverscope.com

FunctionCommand

Input: Unsigned 16 bit value.

Defines the command executed:

Value Function Name Description

0 Get Serial Num Returns the serial number of the attached CAU

1 Get Firmware Ver Returns the version number of the firmware in the CAU

2 Get Driver Ver Returns the version number of the Cscope Control Driver (currently 2.2, rendered as
22)

3 Get Resolution Returns the native bit resolution of the attached CAU

4 Get Frame Length Returns the space allocated to each frame in the CAU, in samples.

5 Get Temperature Returns the temperature inside the CAU in 0.1 °C units (35.2 deg C is returned as
352).

6 Start Link Send Starts transmission of active message already stored in the acquisition unit.

7 Send Link Data Sends the data contained in LinkDataSend to the active message. If bit 0 of LinkStart
is set to 1, the message will also be transmitted out the port.

8 Read Link Data Reads a message received into LinkDataReceived.

9 Active Message Use the parameter value to set the Active message.

10 Calibrate Use the parameter to define what sort of calibrate action – see below

11 Calibrate Set ref Use to set the calibration reference if it is not 2.048V (2.048 is the default, no need to
set).

12 Sampling Status Used to return current sampling status. 0 = idle, 1 = pre-sampling (waiting for trigger)
2 = post-sampling (got trigger)

13 Tf or dT Capture Defines the capture specification as either Tstart - Tstop and attempt to retrun n
values, or Tstart with dt sample spacing for n values

 The following functions evaluate the function over the captured Chan A and Chan B signals, and return the
results to Result A and Result B

14 Sig DC Signal DC value

15 Sig RMS Signal RMS value

16 Sig Max Signal Maximum value

17 Sig Min Signal Minimum value

18 Sig Pk-Pk Signal Peak to Peak value

19 Sig Std Dev Signal Standard Deviation value

20 Sig Freq Signal Frequency based on highest amplitude frequency component in spectra

21 Sig Amplitude Amplitude of the Frequency with highest amplitude. It is expressed a voltage if
parameter = 0, or dBV if parameter = 1

22 Sig Pulse Frequency Signal Frequency based on edge to edge period

23 Sig Duty Cycle Signal Duty Cycle as ratio of positive - negative edge time over positive to positive
edge time

24 Sig Pulse Period Inverse of Sig Pulse Frequency

25 Sig Pulse Length Signal period of first pulse of opposing edges

26 Sig Rise Time Rise time of first positive going edge

27 Sig Fall Time Fall time of first negative going edge

28 Sig 1 Level Voltage of average high level ignoring over shoot

29 Sig 0 Level Voltage of average low level ignoring under shoot

30 Sig V Swing Difference between high level and low level voltages

31 Sig Overshoot Difference between peak voltage and high level voltage

32 Sig Slew Rate Slew rate of rising edge in V/us

33 Sig Freq 2nd
Harmonic

Frequency equal to 2 x Sig Freq

34 Sig Amp 2nd
Harmonic

Amplitude of second harmonic frequency. It is expressed a voltage if parameter = 0,
or dBV if parameter = 1

35 Sig Freq 3rd Frequency equal to 3 x Sig Freq

www.cleverscope.com

Harmonic

36 Sig Amp 3nd
Harmonic

Amplitude of third harmonic frequency. It is expressed a voltage if parameter = 0, or
dBV if parameter = 1

37 Sig Sinad Ratio of (Signal + Noise + Distortion Power) / (Noise + Distortion Power) expressed in
dB

38 Sig THD Total Harmonic Distortion is the Root of the sum of Harmonic amplitudes divided by
the fundamental amplitude. It is expressed a percentage if parameter = 0, or dB if
parameter = 1

39 Sig HD 2+3 Root of the summed squares of 2nd and 3rd harmonic amplitudes. It is expressed a
voltage if parameter = 0, or dBV if parameter = 1

Parameter

Input: Double.
A parameter that may be used by the Function.

LinkDataSend

A pointer to a byte array that contains the data that will be sent to the acquisition unit to be stored to the active
message. The first two bytes are the length of the send message (Least significant byte followed by Most significant
byte). Length bytes follow. A length of 0 is valid.

LinkDataSendAllocSpace

Input value – I32
Used to declare to the DLL how much space has been allocated to the LinkDataSend array. The data array will be
clipped if insufficient space.

FunctionResult

Returned Value – Pointer at Double

This value contains the double format return value from a function.

ResultA

Returned Value – Pointer at Double

This value contains the double format return value for ResultA, which is the result for Channel A for the functions
Sig DC to Sig HD 2+3.

ResultB

Returned Value – Pointer at Double

This value contains the double format return value for ResultB, which is the result for Channel B for the functions
Sig DC to Sig HD 2+3.

www.cleverscope.com

LinkDataReceived

A pointer to a byte array that contains the data received from the serial port. The first two bytes are the length of
the received message (Least significant byte followed by Most significant byte). Length bytes follow. A length of 0 is
valid.

LinkDataReceivedAllocSpace

Input value – I32
Used to declare to the DLL how much space has been allocated to the LinkDataReceived array. The data array will be
clipped if insufficient space.

ErrorOut

Returned pointer. Defines any errors using the TD2 data structure.

www.cleverscope.com

5.4.2 Doing Calibration

The Calibrate Function (10) uses the Parameter to define the calibrate actions. Parameter values are:

Value Description

0 Idle

1 Start Standard Calibration

2 Start Ground Ofs measurement – channel A

3 Start Ground Offset measurement – channel B

4 Start Baseline measurement

5 Start Ref A measurement

6 Start Ref B measurement

7 Save HW values (used internal to driver – do not use)

8 Start Signal generator Calibration

9 Start External Trigger calibration

10 Start Digital Input Calibration

11 Do Calibrate measurements

12 Set Calibration reference (only use if reference is not 2.048V)

Items 1-10 are used to start an action – call them once.
Item 11 – Do Calibrate is called repeatedly (at >= 50 msec intervals) to carry out the calibration.

The FunctionResult returns a real number from 0..100 as a progress indicator. 100 means finished. -1 means an error
occurred.

To calibrate the Cleverscope Acquisition unit you need to carry out these steps:

Standard Calibration

Disconnect all cables from Chan A and Chan B.

1. Set FunctionCommand to Calibrate.
2. Parameter = Start Calibrate, then run CscopeFunction
3. Parameter = Do Calibrate Measurements, call at >=50msec intervals
4. Wait until FunctionResult is either 100.0 or -1.

100.0 means complete. Results are automatically saved to the acquisition unit. -1 means calibration failed.

Once yearly calibration

1. Set FunctionCommand to Calibrate.
2. Connect gound plugs to both Channels A and B.
3. Parameter = Start Ground Ofs measurement – channel A, then run CscopeFunction
4. Parameter = Do Calibrate Measurements, call at >=50msec intervals
5. Wait until FunctionResult is either 100.0 or -1. 100.0 means ready.
6. Parameter = Start Ground Ofs measurement – channel B, then run CscopeFunction
7. Parameter = Do Calibrate Measurements, call at >=50msec intervals
8. Wait until FunctionResult is either 100.0 or -1. 100.0 means ready.
9. Remove ground plugs
10. Parameter = Start Baseline measurement, then run CscopeFunction
11. Parameter = Do Calibrate Measurements, call at >=50msec intervals
12. Wait until FunctionResult is either 100.0 or -1. 100.0 means ready.
13. Attach 2.048V reference to Channel A.
14. Parameter = Start Ref A measurement – channel A, then run CscopeFunction
15. Parameter = Do Calibrate Measurements, call at >=50msec intervals
16. Wait until FunctionResult is either 100.0 or -1. 100.0 means ready.
17. Attach 2.048V reference to Channel B.

www.cleverscope.com

18. Parameter = Start Ref B measurement – channel B, then run CscopeFunction
19. Parameter = Do Calibrate Measurements, call at >=50msec intervals
20. Wait until FunctionResult is either 100.0 or -1.

100.0 means complete. -1 means calibration failed.

5.4.3 Signal Generator calibration

1. Set FunctionCommand to Calibrate.
2. Connect 1x probe or BNC cable between Signal Generator output and Channel A.
3. Parameter = Start Signal generator Calibration, then run CscopeFunction
4. Parameter = Do Calibrate Measurements, call at >=50msec intervals
5. Wait until FunctionResult is either 100.0 or -1.

100.0 means complete. Results are automatically saved to the acquisition unit.

Cscope Spectrum

void CscopeSpectrum(long AcquisitionUnit, unsigned short SpectrumType, unsigned

short FFTWindow, LVBoolean *dBOn, LVBoolean *DegreesOn,

LVBoolean *UnwrapPhase, double *dF, long *NumFreqBins,

double ChanAAmpGain[], long ChanAAmpGainAllocSpace,

double ChanBAmpPhase[], long ChanBAmpPhaseAllocSpace,

double ChanAImPhase[], long ChanAImPhaseAllocSpace,

double ChanBImPhase[], long ChanBImPhaseAllocSpace, TD1 *errorOut)

Cscope Spectrum is used to extract the spectrum from the Channel A and B signals received to the PC. By doing a
replay on an already captured signal you can change the Frequency resolution, and the Frequency Span of the
spectrum captured.

5.4.4 Frequency Span and Resolution

As an example we will capture Tcapture = 20msec of signal with Ncapture = 10,000 samples.

The Frequency Resolution, Fres = 1/ Tcapture = 1/20msec = 50 Hz. This is dF
The Frequency Span, Fspan = Fres x Ncapture / 2 = 50 x 10,000 / 2 = 250 kHz.

So when capturing to display a spectrum, make sure the capture period is long enough to capture the required
frequency resolution, and the number of samples is high enough to achieve the frequency span. After capturing you
can use replay to transfer new sample sets. Remember that Cleverscope will always capture as many samples as
possible. So if you set the capture time as 20 msecs, but only transfer 1000 samples, there will still be 2M or 4M
samples in the Cleverscope buffer. You can do a replay with 100k samples, and get much wider Frequency Span. In
addition if you intend to use only a portion of the frequency span, you will get a lower noise floor if you use a wider
span, and only select the bandwidth of interest from this. This is because you are minimizing aliasing of signals above
the frequency span into the bandwidth of interest.

The VI outputs Num Freq Bins = Ncapture/2. The frequency resolution is dF.

www.cleverscope.com

5.4.5 CscopeSpectrum.vi parameters

Parameters are:

5.4.6 AcquisitionUnit

Input: Signed 32 bit number.
This value sets the Cleverscope Acquisition Unit (CAU) being addressed (0..31).

5.4.7 SpectrumType

Input: U16

Value Function Name Description

0 RMS produce the RMS spectrum

1 Power produce the Power spectrum

2 Gain Phase Produce the Gain-Phase response of Chan A/Chan B

3 Re-Im Produce the RMS spectrum but in Real-Imaginary format

5.4.8 FFTWindow

Input: U16
The FFT Window is applied to the signal to minimize the effects of the discontinuous beginning and end of the signal
capture record. The window is applied using convolution in the time domain. Each convolution function has a
different name.

Value Window Name

0 None

1 Hanning

2 Hamming

3 Blackman-Harris

4 Exact Blackman

5 Blackman

6 Flat Top

7 4 Term B-Harris

8 7 Term B-Harris

9 Low Sidelobe

FFT Window Characteristics

Window -3 dB Main Lobe
Width (bins)

-6 dB Main Lobe
Width (bins)

Maximum Side Lobe
Level (dB)

Side Lobe Roll-Off Rate
(dB/decade)

Uniform (None) 0.88 1.21 -13 20

Hanning (Hann) 1.44 2.00 -32 60

Hamming 1.30 1.81 -43 20

Blackman-Harris 1.62 2.27 -71 20

Exact Blackman 1.61 2.25 -67 20

Blackman 1.64 2.30 -58 60

Flat Top 2.94 3.56 -44 20

www.cleverscope.com

Example FFT Window selection

The choice of window to use depends on the type of signal being examined, and the desired trade-off between
Frequency resolution, spectral leakage and amplitude accuracy. The following table gives a first approximation to the
best type of window to use:

Signal Content Best frequency
resolution

Best spectral
leakage

Best amplitude
accuracy

Sine wave or combination of sine
waves

Hanning Exact Blackman Flat Top

Narrowband random signal
(vibration data)

Hanning Blackman Harris Blackman Harris

Broadband random
(white noise)

Uniform (None) Blackman Uniform

Closely spaced sine waves Uniform, Hamming Hamming Blackman

Excitation signals
(Hammer blow)

Uniform (None)

Unknown content Hanning

5.4.9 dBOn

Input: Boolean
If dB On is true, voltages are output as dBV, and powers as dBW, except for the Re+IM which are always output as
voltages. Otherwise voltages are output as Volts, and powers as Watts (into 1 ohm).

5.4.10 DegreesOn
Input: Boolean
If Degrees On is true, phase is output as degrees, otherwise phase is output as radians.

5.4.11 UnwrapPhase
Input: Boolean
If Unwrap Phase is true, a transition approaching -180 degrees which would normally fold over to +180 degrees
continues negative, for example to -190 degrees. The same goes for approaching +180 degrees, which would
normally folder over to -180 degrees continues positive, for example to +190 degrees. If false, then fold over is used.

5.4.12 ChanAImPhase
Output - array of double real
Returns the Channel A array of Imaginary or Phase values dependant on the Spectrum Type:

Value Function Name Chan A Im/Phase

0 RMS Phase portion of Chan A RMS spectrum, output in degrees if Degrees On, else radians

1 Power Phase portion of Chan A Power spectrum, output in degrees if Degrees On, else
radians

2 Gain Phase Not Used

3 Re-Im Imaginary portion of Chan A Re+Im spectrum

5.4.13 ChanBImPhase
Output - array of double real
Returns the Channel B array of Imaginary or Phase values dependant on the Spectrum Type:

www.cleverscope.com

Value Function Name Chan B Im/Phase

0 RMS Phase portion of Chan B RMS spectrum, output in degrees if Degrees On, else radians

1 Power Phase portion of Chan B Power spectrum, output in degrees if Degrees On, else
radians

2 Gain Phase Not Used

3 Re-Im Imaginary portion of Chan B Re+Im spectrum

5.4.14 dF

Output: Double
The frequency interval between Frequency Bins, equal to the Frequency Resolution

5.4.15 ChanAAmpGain

Output - array of double real
Returns the Channel A array of Amplitude or Gain values dependant on the Spectrum Type:

Value Function Name Chan A Amp/Gain

0 RMS Amplitude portion of Chan A RMS spectrum. Output in Volts or dBV, dependant on dB
On.

1 Power Power portion of Chan A Power spectrum. Output in Watts or dBW, dependant on dB
On, for a load of 1 ohm.

2 Gain Phase Gain portion of Chan A/Chan B Gain/Phase spectrum. Output in Gain or dB,
dependant on dB On.

3 Re-Im Real portion of Chan A Re+Im spectrum, in Volts

5.4.16 ChanBAmpPhase
Output - array of double real
Returns the Channel B array of Amplitude or Phase values dependant on the Spectrum Type:

Value Function Name Chan B Amp/Gain

0 RMS Amplitude portion of Chan B RMS spectrum. Output in Volts or dBV, dependant on dB
On.

1 Power Power portion of Chan B Power spectrum. Output in Watts or dBW, dependant on dB
On, for a load of 1 ohm.

2 Gain Phase Phase portion of Chan A/Chan B Gain/Phase spectrum. Output in degrees if Degrees
On, else radians

3 Re-Im Real portion of Chan B Re+Im spectrum, in Volts

5.4.17 NumFreqBins

Output: Integer 32
The number of frequency bins included in the spectrum output. For a Half Sided spectrum such as output here, the
Bin Frequencies run from 0 (DC) to dF * [(Ncapture/2)-1]

www.cleverscope.com

6 Simple Scope application example
This application example uses the Microsoft Visual Studio Express 2008 C++ code environment to produce a working
executable to make a simple Oscilloscope application with Oscilloscope and Signal generator controls. Further
examples using NI Labview, NI Labwindows, Borland Delphi and C++ Builder, and Microsoft Visual Studio Express C#
and Visual Basic are also provided. All of the examples use the same structures, variable names and program flow.

The application may be used as an example of interfacing to the DLL using C code.

Note the important information in section 2.

Simplescope can be used to control several connected CAUs, though the results are only displayed for one of them.
Simply change the UnitID to connect to another unit.

The C++ version of SimpleScope has been extended over the other text language versions, in that it can control either
1 or 2 CAU's simultaneously, and display 4 channels. These additional controls have been provided:
1. Num Units

Connect 1 unit, 2 independent units, or 2 linked units.
2. Clock Source

Use the internal sampling clock, or use an external clock source to synchronize sampling across both units.
3. Samples Required

Define the number of samples required.

Following the description of SimpleScope we include some application information.

6.1 Front Panel
Here is the C++ variant of SimpleScope:

The application has been setup to capture 2 linked CAU's using the Internal clock source. Signals are connected to
Channel A (Master - Red) and Channel B (Slave - purple). We have used the Center controls to shift the graph
centers to separate the A and B channels. We just used the Get Firmware Version Function to get the firmware
version installed, which is 6463. The other controls define amplitude, time, trigger setting and signal generator
setup. The Triggered method of capture is Active. Note that the application connects immediately when you start it
– so connect a signal to the acquisition unit, and have it on, and connected before running the application.

www.cleverscope.com

6.2 Application Structure
The application structure is shown to the right.

To debug the application you will need the Microsoft Visual Studio Express C++
2008 or later C development environment. This discussion assumes you can look
at the source files with a text editor of some sort.

The application form SimpleForm.h communicates with the Cleverscope interface
file cscope interface.c using the cscope interface.h header file. Cscope
interface.c communicates with the acquisition unit hardware via USB or Ethernet
using the cscope control driver.dll file, which is accessed using the cscope control
driver.h header file. You will also need the ftd2xx.dll file for USB support, and the
NI Visa I/O system. For other environments you may need other header files or
the cscope.lib file to build an application.

 The SimpleScope subdirectory holds the application files:

 Cscope Control driver.dll – contains the executable code to control the
Cleverscope Acquisition Unit

 Cscope Control driver.h – contains a header file with the C code definitions
required to call the DLL. The definitions are based on the STD CALL calling
protocol.

 Cscope Control driver.lib – a linker library file used by Visual Studio.

 Cscope interface.c – the C code that is used to talk to the DLL in the example
application

 Cscope Interface.h – a header file that allows the main application to call
procedures in cscope interface.c.

 SimpleForm.h – the form that contains the design and source for the
application.

 SimpleScope.cpp - the SimpleScope main file used to launch the form.

 SimpleScope.vcproj – Visual Studio project definition and build files.

 Trigger Led.png and Trigger off.png - garphics files used to implement a
flashing LED.

Looking in the Release sub directory we find

 SimpleScope.exe – the executable generated by the compiler. It
runs the example SimpleScope application.

 Zedgraph is an Open Source graphing component. See Section 2.

www.cleverscope.com

6.3 Key Functions in cscope interface.c

We have written cscope interface.c to simplify calling and using the control driver. You will probably want to modify
the file for your own purposes. We are not C experts, and so we have used globals to provide intermediate storage.
If you make a better implementation, please let us know!

These are the key functions:

uInt16 call_cscope_control_driver(int32 unit_number, uInt16 command);

This function calls the control driver, using the global variables to pass parameters.

float64 get_function(int32 unit_number, uInt16 cmd_value, float64 cmd_parameter);

This function calls a CAU function, and returns the result.

int scope_init (int32 unit_number);

This function initializes the acquisition unit. It returns 0 if no error, a positive integer otherwise. You can preset the
acquire variable as needed.

uInt16 cscope_interface(int32 unit_number, uInt16 Intf_source, uInt32 TCP_adr);

This function sets the CAU interface - USB or ethernet, and unit number.

int scope_close (int32 unit_number);

This function closes the acquisition unit. It returns 0 if no error, a positive integer otherwise.

int scope_finish (void);

This function completes use of the driver, and removes runtime components. It returns 0 if no error, a positive
integer otherwise.

void update_values(int32 unit_number, float64 a_div, float64 b_div, float64

t_div,float64 a_div_center, float64 b_div_center, float64 t_div_center, int32

number_of_points, float64 freq, float64 sigvolts, float64 trigvolts, int32

trig_chan,uInt16 trigger_action, uInt32 dig_pattern, uInt32 clock_source, uInt32

unit_usage);

This function is used to update the values of interest to you. You may wish to change it as necessary. It stores the
passed value in the global Acquire variable, and in this implementation sets up the Linking between two units
correctly.

int scope_config (int32 unit_number);

This function updates the configuration inside the acquisition unit when no acquisition is being done. . It returns 0 if
no error, a positive integer otherwise.

int scope_acquire (int32 unit_number);

This function starts an acquisition based on the acquire variable setup. It returns 0 if no error, a positive integer
otherwise.

uInt16 scope_read_waveform (int32 unit_number, float32* a_waveform[], float32*

b_waveform[], int32 *num_samples, float64 *delta_t, float64 *t_zero)

 This function returns the last captured waveforms for Channels A and B, and sampling details directly into the arrays
pointed at. It returns 0 if no error, a positive integer otherwise.

int check_for_samples(int32 unit_number);

This function returns 1 if a trigger has occurred and samples have been returned, otherwise 0.

int get_CAU_status (int32 unit_number);

This function returns the current state of the CAU slot. Status values are:
0. c_runtime_closed - The runtime is not yet operational
1. c_closed - The CAU runtime has been initialized but the CAU has not been opened yet.

www.cleverscope.com

2. c_open - The CAU is open
3. c_fault - The CAU has a fault (loss of power, loss of interface, time out)
4. c_fault_closed - The CAU had a fault, and closed. You will need to init again.
5. c_open_pending - The CAU is open, communications are working, but the complete CAU state has not yet

 been transferred.

6.4 Key variables in scope interface.c

These are important variables, used for transfer between the CscopeControlDriver and the C++ app.

 acquire_defn - The variable holds the current acquisition configuration. The function cscope update values
simply manipulates this variable. The Acquire variable holds values for each connected CAU.

 dt - the sample interval, in seconds

 t0 - the start time of the sample set, relative to the trigger point.

 samples[num_acquisition_units*2][max_samples] - arrays to hold the received samples
pointers to these arrays are used to reduce copying

 dig_samples[max_samples] - array to hold the digital samples

6.5 Simple Scope Operation
Simple scope operation is determined by SimpeForm.h (or Simplescope.c in languages where the form is not the
main control). Steps are:

 SimpleForm_Load, on loading the form, use the ZedGraph dll to CreateGraph, then use scope_init to open the
Cleverscope Acqusition Unit. Finally call InitializeGUI to start the GUI.

 On opening the form, InitializeGUI is called to set each control to the correct value. Key operating values are
initialized:
a. single_acquire - Boolean, means acquire a single signal with triggered capture
b. auto_acquire – Boolean, means acquire multiple signals with auto capture
c. trigger_acquire - Boolean, means acquire multiple signals with triggered capture
d. waiting_for_trigger – Boolean, if true, waiting for trigger. Otherwise can start acquire.
e. Initialize graph controls and user interface controls
f. Enable the 50ms timer. You will find the timer control on the bottom left of the Form window, below the

window scroll bar. The timer calls the timer1_tick event every 50 msecs. This procedure is the central
controller for the acquisition system.

 On a user control event: Call the event handler. Each event handler deals with a separate control value. When the
value is changed, vals_changed is set true.

Four events are important:
a. SingleTrigger – start a single capture with trigger. Set single_acquire. Set the trigger_action to either single

(if we haven’t been waiting for a trigger) or stop (if waiting for a trigger).
b. Auto – start a continuous auto capture. Set auto_acquire. Set the trigger_action to either auto (if we haven’t

been capturing) or stop (if capturing).
c. Triggered - start a continuous triggered capture. Set trigger_acquire. Set the trigger_action to either trigger

(if we haven’t been capturing) or stop (if capturing).
d. QuitButton – or OnFormClose – these events cause the SimpeScope program to exit.

www.cleverscope.com

 Event Timer 1_Tick – this is the central control function in Simple Scope. It fires every 50 msecs.

This function proceeds in these stages:
a. The timer is disabled - if we use more than 50 msecs, we ignore another timer tick.
b. If we are not waiting for a trigger (single_acquire or auto_acquire or trigger_acquire are all false), we stop

waiting_for_trigger, and turn off the trigger LED.
c. We make sure all the attached CAU's are open. We don't do anything else until they are open.
d. If we are waiting for a trigger, we check_for_samples. If there are samples, we do a scope_read_waveform to

read the values into our waveform variables.
e. If a waveform has been read, we display it to the graph (decimated to 1000 points).
f. We do this for all connected CAU's.
g. If we received a waveform, we turn on the Trigger LED, otherwise we turn it off.
h. If we aren't waiting_for_trigger, and one of single_acquire or auto_acquire or trigger_acquire is true, and the

CAU's are open, we start an acquire. If any values have changed we use update_values to make sure the
Acquire variable is up to date before starting the Acquire. We set waiting_for_trigger as true.

i. If we are calibrating, we allow the calibration state system to work.
j. If vals_changed is true, we update the acquire variable using update_values. This does not update the

acquisition unit itself. Because of that we do a scope_config to force the new values into the CAU. We do this
because a user might have changed the controls while an earlier transfer is taking place.

k. Finally we set the timer enable state to be the same as f_timer_active (which can be set to false in other parts
of the system. This gives us an exit strategy. If f_timer_active is false, we scope_close, and then scope_finish,
and then exit. This closes the form. Scope_finish and scope_close are in cscope_interface.

l. The user can click Quit or the SimpleForm close box, and the Quitbutton_click event is called. All these do is
set f_timer_active false, which causes the eventtimer1 to close down. The FormClosing function uses a
semaphore (stop_sync) to ensure that the timer is not running while the form is closing. This ensures an
orderly close down.

www.cleverscope.com

6.6 Applying SimpleScope
We can use the SimpleScope application to check out a number of scenarios in using the Cleverscope Acquisition
Unit (CAU).

6.6.1 Linked two unit scope with Four Channel capture
Two units can be linked together using the CS1020 link cable. The link cable transfers trigger signals between the two
units. In addition an external sampling clock can be used by having the CS810 option fitted at time of manufacture.
The external sampling clock means that all 4 channels sample synchronously. Without the external sampling clock,
the two units clocks will be different by a small degree, and the sampling points will not be time coherent

Acquire Definition

Master

Item Explanation

Link Port Set to 'Master' (4)

Trigger Source Specifies the Trigger Source as normal, 0 = A chan, 1 = B chan, 2 = Ext

Trigger, 3 = Dig Input, 4 = Link Port
Ext Sample Clock Set to 0 for an internal clock, or 1 for an external fixed frequency

sampling clock, 0r 2 for an external variable frequency sampling
clock (no stability detection). The clock must be sine or square, 0.5 -
3V p-p amplitude, 1-110 MHz frequency.

Slave

Item Explanation

Link Port Set to 'Slave' (3)

Trigger Source Set to Link Port (4).

Ext Sample Clock Set to 0 for an internal clock, or 1 for an external fixed frequency
sampling clock, 0r 2 for an external variable frequency sampling
clock (no stability detection). The clock must be sine or square, 0.5 -
3V p-p amplitude, 1-110 MHz frequency.

The C++ version of SimpleScope can be used to display 4 channels. We did this:

 We assigned two units - Master (0) and Slave (1).
In cscope interface.c, the update_values procedure, we setup the 4 channel linkage based on unit_usage:

acquire[unit_number].LinkPort = 0; //debug UART as default

if (unit_usage == two_linked)

 {

 if (unit_number == slave)

 {

 acquire[unit_number].TriggerSource = 4; //Link Input

 acquire[unit_number].LinkPort = 3; //This is a Slave Cleverscope

 }

 else

 {

 acquire[unit_number].LinkPort = 4; //This is a Master Cleverscope

 }

 }

if (clock_source == external_clk)

 acquire[unit_number].ExtSampleClock = 1;

else

 acquire[unit_number].ExtSampleClock = 0;

You can see that we have setup both the linkage, and the clock source here.

 Back to SimpleForm, In SimpleForm_Load, if unit_usage (a front panel control) is for 2 units, we scope_init(slave)
as well.

 In Num_units_Selected_IndexChanged, if the user selects 2 units while operating, we scope_init(slave).
In this way we have opened both units as they are required.

www.cleverscope.com

 In timer1_tick, we check that both CAU's are open before we do anything else.
 status = get_CAU_status(master);

 if (unit_usage>one_unit)

 {

 if (status == c_open) //only update status if master already open.

 status = get_CAU_status(slave);

 }

 if (CAU_status != status)

 {

 CAU_status = status;

 Cscope_Status->SelectedIndex = CAU_status;

 }

 The result is that CAU_status contains Open if both units are open.

 Next, if waiting_for_trigger (a triggering state variable) = 2, we check_for_samples(slave), and if there are any,
display them. After receiving slave samples, we set waiting_for _trigger to 1.

 Next, if waiting_for_trigger = 1, we check_for_samples(master), and if there are any, display them. After
receiving master samples, we set waiting_for _trigger to 0 - we have finished.

 If waiting_for _trigger = 0, and an acquire has been scheduled by the user clicking on Single, Auto or Triggered, we
start another scope_acuire for both the master and the slave. We set waiting_for _trigger = 2. We also do update
values first, so any user changes get acted on.

 It doesn't matter which order the master or slave acquires are started, or the order in which they are read. It is
important that once a CAU reports it has samples that they are read immediately.

6.6.2 Explanation of four channel operation

The Link port has two lines called Link_in and Link_out.

For a 2 unit combination, the slaves Link_out is connected to the masters Link_in, and the masters Link_out is
connected to the slaves Link_in.

When a unit is assigned as a slave, it sets Link_out to 0, which means not ready. When it sees an acquire command,
and it has started acquiring, it sets Link_out to 1, which means that is ready.

When the master is issued with an acquire command, it outputs outputs Link_out =0 which means not triggered ,
and waits until the Link_in input is 1 - the slave is ready, and then and starts acquiring. This makes sure that both
units are ready before acquisition starts.

When the master sees a trigger from the source programmed, it outputs Link_out = 1, which means triggered. The
slave sees the trigger source as link_input and triggers. As a result it sets Link_out = 0 - meaning it has seen the
trigger, and is no longer ready.

When the master sees Link_in change to 0, it knows that the
slave has seen the trigger, and it also sets Link_out = 0. The
trigger has been captured by both units and both units are
now waiting for the samples to be transferred back to the PC.
Both units are idle until the next acquire command.

We take special care with the link port timing so that the
trigger point is synchronous between both units to +/-10ns.

All this means that it does not matter in what order and how
much later samples are transferred to the PC. In fact samples
are transferred by the driver to the PC automatically, and you
don't see that process. The routine Scope_read_waveform
simply returns pointers to the data that is already in the
PC. So the order of transfer does not matter.

www.cleverscope.com

6.6.3 Acquisition Unit based waveform averaging

The acquisition unit can be used to automatically acquire 4, 16, 64 or 128 frames synchronous with the trigger, and
then average across all of them, and return one averaged waveform as a result. The result can be rendered as 10, 12
or 14 bits. In this example we will average 16 frames, and return with 12 bit precision

With Minimum Scope set these values:

Acquire.element Value Explanation
Acquisition mode Waveform

averaged
(4)

This value sets the type of acquisition to do. We want waveform averaged, so we set
the Acquire Definition. Acquisition mode to Waveform avg (4)

Waveform averages 16 We want 16 frames to be averaged together. When a ‘Single’ trigger is started, the
acquisition unit will capture 16 frames in sequence and then carry out the waveform
average.

Num Buffers 17 This is the number of buffers assigned for frame capture. This must always be at
least one more than the number of frames captured sequentially (because we
reserve one buffer for circular sampling to find the next trigger). In this example we
set ‘Num Buffers’ to 17

Num Seq Frames 1 We want to return 1 frame, which is the average of the number of frames given in
Waveform averages

Acquire Mode

Single (0) We use ‘Single’ (0), which means capture with a trigger, and start a capture only
once, but do a sequence, because Num seq frames>1.

Sampler Resolution 12 bit (1) Set the returned values to have a resolution of 12 bits.

After setting these values in the Acquire Definition, we run Minimum Scope once, and it captures a waveform of 16
averages, with 12 bit resolution.

6.6.4 Filtering the Signal
The Cleverscope Acquisition unit includes a 20 MHz pre-filter and a 40ns ~ 1.28 us moving average filter for filtering
the 100 MSPS captured data stream. When enabled the filters provide real-time results. The filters include time
delay compensation so that all channels are time aligned. Using the filters improves bit resolution at the expense of
sample rate. With a moving average filter time constant of 640ns, a true 14 bit ENOB can be achieved with an
effective bandwidth of about 1 MHz.

For this example we will not use the 20 Mhz prefilter, but use a 640ns moving average filter, and return 14 bit
filtered results. Channel B will be set to using the 20 MHz pre-filter only.

www.cleverscope.com

With Simple Scope set these values in the cscope interface/scope_init function:

Acquire.element Value Explanation
A Bandwidth 10101001b

=
0xA9
(169 dec)

A Bandwidth (changed from firmware 4639).

Bit 0 - Global Filter enable, 0 = no filter, 1 = use filter

Bit 2:1 - Pre-filter frequency 0 = No filter, 1 = 20 MHz filter, 2 and 3
reserved

Bit 3: - If true, use the moving average (MA) filter

Bit 4: - If true use exponential (E) filter - mutually exclusive with moving
average filter

Bits 7:5 - Filter time constant:

 000 = no filter

 001 = 40ns MA , 20ns E

 010 = 80ns MA, 40ns E

 011 = 160ns MA, 80ns E

 100 = 320ns MA, 160ns E

 101 = 640ns MA, 320ns E

 110 = 1280ns MA, 640ns E

 111 = reserved MA, 1280ns E

For the moving average only the channel A moving average value is used,
and it also used for Channel B
If Bit 0 is 0, then all the other bits are ignored.

B Bandwidth 00000011b
= 3

Same description as above.

Sampler Resolution 14 bit (2) Set the returned values to have a resolution of 14 bits.

Note that when using 14 bit resolution, the 32 bit memory storage system stores 2 x 14 bit analog values, and just 4
bits (In1-4) of the digital signal. Reduce resolution to 12 bits to get all 8 digital channels.

6.6.5 Sequential Capture

Sequential capture is the process of capturing a set of N frames, each started by a separate trigger, and then
transferring the samples captured to the PC. The sequential frame capture system requires about 200us between
triggers minimum.

Examples of sequential frame capture are in ‘Bandpass Response.vi’ and ‘Minimum seq scope’ included with the
Cscope Control Driver package. TheBandpass response example uses the acquisition unit sig gen auto step facility to
step the signal generator after every trigger. The example steps the signal generator over a user defined frequency
range (eg 1M to 3M Hz) in steps (eg 1 kHz), using sequential capture to capture up to 3000 separate triggered
frames. It then transfers the sequence to the PC, and does an FFT on each frame, and plots the results to a peak
captured graph. This shows the bandpass response of any network that might be between the signal generator
output and the Channel A/B inputs. Because all of the capturing and stepping is done automatically in the acquisition
unit, this process is fast.

The Simple scope example can be modified to capture and display a sequence of frames. For this example we will
assume we capture 200 triggered frames, each of 100us duration, and 1000 samples per frame. We will start
capturing 50us before the trigger, and stop 50us after the trigger. We will transfer all the samples.

Setup

We assume the values on amplitude scale, coupling, bandwidth etc are all setup as required. This example only
works through the values needed to meet what we want to do.

Acquire Definition

Item Explanation

Start Time
-50us

The capture start time, relative to the trigger point. Can be + or –.
The value -10u means start capturing 10us before the trigger. The
value 600m means start capturing 600 ms after the trigger (ie delay
after the trigger). We use -10u.

www.cleverscope.com

Stop Time
+50us

The capture stop time relative to the trigger. We will use 40us. The
total capture duration will be 50us.

Num Buffers
1000

This is the number of buffers assigned for frame capture. This must
always be at least one more than the number of frames captured
sequentially (because we reserve one buffer for circular sampling to
find the next trigger). In this example we set ‘Num Buffers’ to 1000
in the Acquire definition.

Num Sequence Frames
200

This is the number of frames we want to capture in sequence. Set
this to 200. Now when a ‘Single’ trigger is started, the acquisition
unit will capture 200 frames in sequence and then signal
completion.

Acquire Mode
0 (Single)

This specifies how we are going to capture the frames. We use
‘Single’ (0), which means capture with a trigger, and start a capture
only once.

Transfer Size
Sequence (6)

This value specifies the size and type of transfer being used. 0 is
Normal. The value we want is ‘Sequence’ (6) which means the
acquisition will transfer a full sequence whenever it is told to do a
transfer. We set up the Acquire definition to sequence.

Input values to specify

In addition to the Acquire Definition, we have values that specify the playback. For Cleverscope the capture process
is setup independently of the playback process (think of a tracker graph displaying 10us of a signal that is 800ms
wide). So we need to specify these values:

Item Explanation

Replay Start Time
-50u

The replay start time, relative to the trigger point. Can be + or –. The value
-5u means start displaying 5us before the trigger. The value 300m means
start displaying 300ms ms after the trigger. We use -50u, which is the
same as the capture start time (it can be different).

Replay Stop Time
+50u

The replay stop time relative to the trigger. We will use 50us. The total
replay duration will be 1050us, which is the same as the capture duration.

Num Samples
1000

This specifies how many samples we want in our replay. It may be
truncated. The Cleverscope acquisition unit might capture 4M samples for
a particular signal. We might only want to playback 20,000. The replay
system automatically decimates the samples in the acquisition unit to
meet the replay values. In this example we want 1000 samples.

Acquisition Unit
0

We can control up to 32 concurrent units. We only want one for now, so
we leave the Acquisition Unit input unwired, to default to 0.

To implement this example, set up the Acquire variable values, and then add an extra section into the Timer1Tick
function. First we add an extra meaning to the waiting_for_trigger state variable. Lets say that 3 means trigger
acquired, and now doing a replay.

Modify the existing:

 if (waiting_for_trigger == 1) //waiting for master acquire

 {

 if (check_for_samples(master))

 {

 Trig_LED->Visible = true;

 waiting_for_trigger = 3; //start a replay

 scope_replay (int32 unit_number, replay_start, replay_stop, num_samples,num_frames);

 //start a replay

 }

 }

www.cleverscope.com

and add:
 if (waiting_for_trigger == 3) //waiting for master replay

 {

 if (check_for_samples(master))

 {

 waiting_for_trigger = 0; //finished

 for (i=0; i < num_frames; i++)

 {

 scope_read_frame (master,i, &a_waveform, &b_waveform, &num_samples, &dT, &T0);

 //replay all the frames, and do the normal display stuff

 //....

 }

 }

 }

1. The Acquire Mode is set to single when you click the 'Single Trigger' button. The acquire definition needs to
be manually set to include the number of buffers allocated to 1000, in scope_init. Once the buffers are
allocated we can proceed to acquire up to num_buffers – 1 frames to the buffers.

2. Following Acquire, we call the control driver with ‘Wait for Samples’ until we see that the samples have been
captured. Each frame will have been individually triggered until the number of frames specified have been
captured.

3. Once the samples are in CAU memory, we need to transfer them as a frame transfer to the PC (Acquire does
include the capability to automatically transfer the latest frame to the PC, but this is not sufficient to transfer
all the frames.). This is done by starting a Replay. Because we captured a sequence, the replay will replay the
full sequence.

4. After starting the replay we need to make sure all the samples have been transferred to PC memory. We use
Wait for Samples for this.
Once we have the samples in PC memory, we can get the frames, one at a time from PC memory, and
process them as we wish. Here we display them. We use the Get Frame command to do this.

6.6.6 Auto step Signal Generator Control

It is possible to automatically step the signal generator following an acquisition. This is useful for carrying out
voltage/frequency sweeps while capturing a sequence. The Labview Bandpass response example shows how this
was done.

Acquire Definition

Item Explanation

Sig Gen Func
1

Defines the signal generator function. Without Auto stepping we
use ‘Standard’ (0). We want ‘Auto advance’ (1) to automatically step
the signal generator after an acquisition is complete. This happens
in the acquisition unit.

Sig Gen Freq Step
1000

Specifies the step size in Hz. In our example, it is user configurable,
and defaults to 1kHz.

Sig Gen Freq Specifies the start frequency for auto stepping. In our example we
use 1MHz

We must update the Acquire Definition and input it to the Cscope Control Driver when calling the driver with the
Acquire or Update commands.

Use

At a minimum we need to do these things:
1. Setup the Acquire definition the way we want it.
2. Call the control driver with the command Acquire (1). By combining the capture with a sequence (see

above), we can capture thousands of frames, and the signal generator will automatically step between each
capture. In this way a frequency response can be measured

