String Formatting in C#

I couldn’t find a quick reference to .NET string formatting using the String.Format() function, so I created this one (which has also spawned this String Formatting FAQ and strangely enough, this cartoon.

When I started working with the .NET framework, one thing puzzled me. I couldn’t find sprintf(). sprintf() is the C function that takes an output buffer, a format string, and any number of arguments, and builds a string for you. For example:

char szError[256];
sprintf(szError, “Error %d occurred.\n”, nError);
This would write “Error 12 occurred.” into the szError buffer (assuming nError was 12). It’s a basic part of C programming and most C++ programmers still use it though better functionality is available in the STL because sprintf is simple to use and clear. The STL equivalent would be:

str << “Error ” << nError << ” occurred.” << endl;
Or something close to that. It’s type-safe, and more OO than sprintf, but not as easy to read and not as easy to localize.

The .NET framework handles strings very nicely - but it takes some getting used to. The rough equivalent of sprintf in .NET is the static String.Format function, which takes a format string and some arguments, and generates an output string. (This is a nice improvement over sprintf since there’s no chance you’ll overflow the output buffer). For example:

string errorString = String.Format(”Error {0} occurred.”, nError);
Teeming with metadata, the .NET environment doesn’t need the format string to say what type of data you’re formatting, just where you want it. (A common sprintf bug is supplying the wrong data type - there’s no protection from using %s instead of %d and having your program crash when sprintf is called).

[image: image1.png][image: image2.png]The {0} in the string above is replaced with the value of nError, but what if you want to specify the number of digits to use? Or the base (hexadecimal etc)? The framework supports all this, but where it seemed confusing is that it’s not the String.Format function that does the string formatting, but rather the types themselves.

Every object has a method called ToString that returns a string representation of the object. The ToString method can accept a string parameter, which tells the object how to format itself - in the String.Format call, the formatting string is passed after the position, for example, “{0:##}”

The text inside the curly braces is {index[,alignment][:formatString]}. If alignment is positive, the text is right-aligned in a field the given number of spaces; if it’s negative, it’s left-aligned.

Strings
There really isn’t any formatting within a string, beyond it’s alignment. Alignment works for any argument being printed in a String.Format call.

	Sample
	Generates

	String.Format(”->{1,10}<-”, “Hello”);
	-> Hello<-

	String.Format(”->{1,-10}<-”, “Hello”);
	->Hello <-

Numbers
Basic number formatting specifiers:

	Specifier
	Type
	Format
	Output (Passed Double 1.42)
	Output (Passed Int -12400)

	c
	Currency
	{0:c}
	$1.42
	-$12,400

	d
	Decimal (Whole number)
	{0:d}
	System.FormatException
	-12400

	e
	Scientific
	{0:e}
	1.420000e+000
	-1.240000e+004

	f
	Fixed point
	{0:f}
	1.42
	-12400.00

	g
	General
	{0:g}
	1.42
	-12400

	n
	Number with commas for thousands
	{0:n}
	1.42
	-12,400

	r
	Round trippable
	{0:r}
	1.42
	System.FormatException

	x
	Hexadecimal
	{0:x4}
	System.FormatException
	cf90

Custom number formatting:

	Specifier
	Type
	Example
	Output (Passed Double 1500.42)
	Note

	0
	Zero placeholder
	{0:00.0000}
	1500.4200
	Pads with zeroes.

	#
	Digit placeholder
	{0:(#).##}
	(1500).42
	

	.
	Decimal point
	{0:0.0}
	1500.4
	

	,
	Thousand separator
	{0:0,0}
	1,500
	Must be between two zeroes.

	,.
	Number scaling
	{0:0,.}
	2
	Comma adjacent to Period scales by 1000.

	%
	Percent
	{0:0%}
	150042%
	Multiplies by 100, adds % sign.

	e
	Exponent placeholder
	{0:00e+0}
	15e+2
	Many exponent formats available.

	;
	Group separator
	see below
	
	

The group separator is especially useful for formatting currency values which require that negative values be enclosed in parentheses. This currency formatting example at the bottom of this document makes it obvious:

Dates
Note that date formatting is especially dependant on the system’s regional settings; the example strings here are from my local locale.

	Specifier
	Type
	Example (Passed System.DateTime.Now)

	d
	Short date
	10/12/2002

	D
	Long date
	December 10, 2002

	t
	Short time
	10:11 PM

	T
	Long time
	10:11:29 PM

	f
	Full date & time
	December 10, 2002 10:11 PM

	F
	Full date & time (long)
	December 10, 2002 10:11:29 PM

	g
	Default date & time
	10/12/2002 10:11 PM

	G
	Default date & time (long)
	10/12/2002 10:11:29 PM

	M
	Month day pattern
	December 10

	r
	RFC1123 date string
	Tue, 10 Dec 2002 22:11:29 GMT

	s
	Sortable date string
	2002-12-10T22:11:29

	u
	Universal sortable, local time
	2002-12-10 22:13:50Z

	U
	Universal sortable, GMT
	December 11, 2002 3:13:50 AM

	Y
	Year month pattern
	December, 2002

The ‘U’ specifier seems broken; that string certainly isn’t sortable.

Custom date formatting:
	Specifier
	Type
	Example
	Example Output

	dd
	Day
	{0:dd}
	10

	ddd
	Day name
	{0:ddd}
	Tue

	dddd
	Full day name
	{0:dddd}
	Tuesday

	f, ff, …
	Second fractions
	{0:fff}
	932

	gg, …
	Era
	{0:gg}
	A.D.

	hh
	2 digit hour
	{0:hh}
	10

	HH
	2 digit hour, 24hr format
	{0:HH}
	22

	mm
	Minute 00-59
	{0:mm}
	38

	MM
	Month 01-12
	{0:MM}
	12

	MMM
	Month abbreviation
	{0:MMM}
	Dec

	MMMM
	Full month name
	{0:MMMM}
	December

	ss
	Seconds 00-59
	{0:ss}
	46

	tt
	AM or PM
	{0:tt}
	PM

	yy
	Year, 2 digits
	{0:yy}
	02

	yyyy
	Year
	{0:yyyy}
	2002

	zz
	Timezone offset, 2 digits
	{0:zz}
	-05

	zzz
	Full timezone offset
	{0:zzz}
	-05:00

	:
	Separator
	{0:hh:mm:ss}
	10:43:20

	/
	Separator
	{0:dd/MM/yyyy}
	10/12/2002

Enumerations
	Specifier
	Type

	g
	Default (Flag names if available, otherwise decimal)

	f
	Flags always

	d
	Integer always

	x
	Eight digit hex.

Some Useful Examples
String.Format(”{0:$#,##0.00;($#,##0.00);Zero}”, value);
This will output “$1,240.00″ if passed 1243.50. It will output the same format but in parentheses if the number is negative, and will output the string “Zero” if the number is zero.

String.Format(”{0:(###) ###-####}”, 8005551212);
This will output “ (800) 555-1212 ″.

