
www.cleverscope.com

Cleverscope Ltd
Phone +64 9 524 7456
Fax +64 9 524 7457
Email support@cleverscope.com
28 Ranfurly Rd, Epsom
P.O. Box 26-527
Auckland 1003
New Zealand

V1.3
27 Nov 08

Simple Scope application example

Using the Cleverscope DLL with C or Delphi

Summary
This application example uses the NI Labwindows C code environment to produce a working

executable to make a simple Oscilloscope application with Oscilloscope and Signal generator

controls. Further examples using NI Labview, Borland Delphi and C++ Builder, and Microsoft

Visual Studio C++ and C# are also provided. All of the examples use the same structures, variable

names and program flow.

The application may be used as an example of interfacing to the DLL using C code.

Important Information

1. To use the application you will have to have the National InstrumentsLV7.1 Run Time library

installed. This happens automatically when you install Cleverscope, so make sure Cleverscope

has been installed on the target machine. We can provide an installer if requested.

2. The DLL uses the STD CALL method of parameter passing. Ensure your environment is setup

this way.

3. Connect a signal source to the Chan A input (such as the Sig Gen Output) so the application has

something to trigger off.

www.cleverscope.com

The Simple Scope application

The SimpleScope.exe demonstration application has the following front panel:

You can see there are controls to set the time base, the A and B channel gains, the trigger channel

and amplitude, and the signal generator frequency and amplitude. As such it represents a simple

example for use of the major features of the Cleverscope Acquisition Unit.

Note that the application connects immediately when you start it � so connect a signal to the

acquisition unit, and have it on, and connected before running the application.

www.cleverscope.com

Application Structure

The application structure is shown to the right.

To debug the application you will need Labwindows CVI � the National

Instruments C development environment.

The application SimpleScope.c communicates with the Cleverscope

interface file cscope interface.c using the cscope interface.h header file.

Cscope interface.c communicates with the acquisition unit hardware via

USB using the cscope control driver.dll file, which is accessed using the

cscope control driver.h header file. You will also need the ftd2xx.dll and

quickusb.dll files for USB support, and the NI Visa I/O system, if you

have a later version of Cleverscope. For other environments you may need

other header files or the cscope.lib file to build an application.

 The full directory of files is shown here:

� Cscope Control driver.dll � contains the executable code to control the

Cleverscope Acquisition Unit

� Cscope Control driver.h � contains a header file with the C code definitions

required to call the DLL. The definitions are based on the STD CALL

calling protocol.

� Cscope Control Driver.ini � this file is not used, but present for future

possibilities.

� Cscope Control driver.lib � a linker library file used by Labwindows CVI

� Cscope interface.c � the C code that is used to talk to the DLL in the

example application

� Cscope Interface.h � a header file that allows the main application to call

functions in cscope interface.c.

� Extcode.h, fundtypes.h, platdefines.h �header files required to define types

used by the Labwindows system if you are using an alternative compiler.

� FTD2XX.dll � a DLL called by cscope control driver.dll to communicate

via the USB 1.1 link with the Cleverscope Acquisition unit.

� QuickUSB.dll � a DLL called by cscope control driver.dll to communicate via the USB 2.0 link

with the Cleverscope Acquisition unit. Supplied for backward compatability. No longer used.

We now use the NI-Visa system for USB and Ethernet communications.

� SimpleScope.c � the example application C code source.

� SimpleScope.cws, SimpleScope.prj �Labwindows project definition and build files.

� SimpleScope.exe � the executable generated by the compiler. It runs the examples system.

� SimpleScope.h � an automatically generated header file that allows SimpleScope.c to receive

events and call backs from the user interface.

� SimpleScope.uir � the Labwindows user interface definition.

www.cleverscope.com

Key Functions in cscope interface

These are the key functions:

int scope_init (void);

This function initialises the acquisition unit. It returns 0 if no error, a positive integer otherwise.

int scope_close (void);

This function closes the acquisition unit. It returns 0 if no error, a positive integer otherwise.

int scope_config (double a_div, double b_div, double t_div, int
number_of_points, double freq, double sigvolts, double trigvolts, int
trig_chan);

This function configures the acquisition unit. It returns 0 if no error, a positive integer otherwise.

int scope_acquire (void);

This function starts an acquisition based on the acquire variable setup. It returns 0 if no error, a

positive integer otherwise.

int scope_read_waveform (double a_waveform[max_samples], double
b_waveform[max_samples], int *num_samples, double *delta_t, double *t_zero);

This function returns the last transferred waveforms for Channels A and B, and sampling details. It

returns 0 if no error, a positive integer otherwise.

int check_for_samples(void);

This function returns 1 if a trigger has occurred and samples have been returned, otherwise 0.

int get_CAU_status (void);

This function returns the current state of the CAU slot. 0 = Runtime closed (slot has not been

initialized), 1 = Closed (the slot has been initialized, but there is no Cleverscope connected), 2 =

Open (there is a Cleverscope connected, and working), and 3 = Fault. Fault occurs once when

something goes wrong (eg power removed to CAU, or cable removed). After one iteration of fault,

the slot is automatically closed. It will require another call to scope_init to re-start the CAU slot.

www.cleverscope.com

Key variables in scope interface.c

The acquire variable holds the current acquisition configuration. The function cscope config

simply manipulates this variable.

Here is the default setup for acquire:
acquire.AcquireMode = 3; //stopped
acquire.AcquisitionMode = 1; //peak captured
acquire.Acquirer = 4; //cleverscope is the acquirer
acquire.TransferChans = 2; //transfer both channels
acquire.AMaxScale = 2; // Volts range = +/-2
acquire.AMinScale = -2;
acquire.BMaxScale = 2;
acquire.BMinScale = -2;
acquire.AProbe = 0; //x1
acquire.BProbe = 0; //x1
acquire.ACoupling = 1; //DC
acquire.BCoupling = 1; //DC
acquire.ABandwidth = 1; //100 MHz
acquire.BBandwidth = 1; //100 MHz
acquire.TriggerSource = 0; //A Chan trigger
acquire.TriggerAmplitude = 0; //Trigger at zero volts
acquire.ATriggerAmplitude = 0;
acquire.BTriggerAmplitude = 0;
acquire.TriggerFilter = 0; //No trigger filter
acquire.TrigSlope = 0; //rising
acquire.TriggerHoldoff = 0;
acquire.DigPatternRqd = 0; //not used
acquire.DigPattern = 0; //not used
acquire.ExtTrigThreshold = 0;
acquire.DigInputThreshold = 2;
acquire.StartTime = -0.005; //-5 msecs
acquire.StopTime = 0.005; //5 msecs
acquire.PreTrigTime = 0.005;
acquire.Port = 0;
acquire.NumDivisions = 10;
acquire.NumSeqFrames = 1;
acquire.NumBuffers = 2;
acquire.SigGenFreq = 1000; //1kHz output
acquire.SigGenAmp = 1; //1V amplitude
acquire.SigGenOffset = 0;
acquire.SigGenWaveform = 0; //sine
acquire.SigGenSweep = 0;
acquire.SigGenFunc = 0;
acquire.SigGenFreq2 = 0;
acquire.SigGenPhase = 0;
acquire.Trig2Function = 0; //not used
acquire.MinTriggerPeriod = 0.0000001;
acquire.MaxTriggerPeriod = 1;
acquire.TriggerCount = 1;
acquire.Trig2Slope = 0;
acquire.Trig2SourceChan = 0;
acquire.Trig2Level = 0;
acquire.DigPattern2Rqd = 0;
acquire.DigPattern2 = 0;
acquire.Trigger2Source = 0;
acquire.WaveformAverages = 1;
acquire.ValueChanged = 1;
samples_required = 1000;
SamplerResolution = 0; //10 bit sampler

See the Cscope driver DLL documentation for the full definition of the acquire variable.

www.cleverscope.com

Simple Scope Operation
Simple scope operation is determined by SimpleScope.c (or equivalents, or the Form code in other

languages). Steps are:

� Main, start system. Call scope_init. Then call InitializeGUI, below. When GUI finishes, call

scope_close.

� On opening the form, InitializeGUI is called to set each control to the correct value. Key

operating values are initialized:

a. single_acquire - Boolean, means acquire a single shot with triggered capture

b. auto_acquire � Boolean, means acquire multiple shots with auto capture

c. waiting_for_trigger � Boolean, if true, waiting for trigger. Otherwise can start acquire.

d. vals_changed � Boolean, if true, a value has changed, do update or acquire;

e. trigger_action � how to capture � single (triggered), auto or stop.

� On a user control event: Call the event handler. Each event handler deals with a separate control

value. When the value is changed, vals_changed is set true.

Three events are important:

a. SingleAcquire � start a single capture with trigger. Set single_acquire. Set the

trigger_action to either single (if we haven�t been waiting for a trigger) or stop (if waiting for a

trigger).

b. TriggeredAcquire � start a continuous auto capture. Set auto_acquire. Set the

trigger_action to either auto (if we haven�t been capturing) or stop (if capturing).

c. QuitButton � or OnFormClose � these events cause the SimpeScope program to exit.

� Event Timer Tick � this is the central control function in Simple Scope. It fires every 50 or 60

msecs (some environments only support 15msec granularity). Anything less than 50 msec is not

effective.

This function proceeds in 4 stages:

a. If vals_changed is true, we update the acquire variable using update_values. This does not

update the acquisition unit itself.

b. If we are waiting for a trigger, and got_samples is true, we get the samples, and graph them.

If there is no trigger, got_samples returns false.

c. If we are not waiting for a trigger, and either single_acquire or auto_acquire are true, we

start an acquisition, using cscope_acquire. This function first sends the acquire variable changes

to the acquisition unit, and then starts an acquisition.

d. If vals_changed is still true (implying that we did not get a trigger, or the user made a

control change while acquisition was not complete, or there is no acquisition in progress), we use

update_values again to update the acquire variable, and then use scope_config to update the

acquisition unit directly.

	Summary
	Important Information
	The Simple Scope application
	The SimpleScope.exe demonstration application has the following front panel:
	You can see there are controls to set the time base, the A and B channel gains, the trigger channel and amplitude, and the sig
	Key Functions in cscope interface
	Key variables in scope interface.c

	Simple Scope Operation

